

Digital Signature Schemes

Prof. Dr. Ayad Ibrahim \& Prof. Dr. Ali A. Yassin University of Basrah., Education College for pure Sci., Computer Sci. Dept., 2022-2023

Outline

- Introduction
- Advantage of Digital signatures
- Adversary Goal
- RSA-signature
- Attacks on RSA-signature
- Hashed-RSA
- Shnorr Signature
- DSA algorithm

Introduction

- Digital signature schemes allow a signer S who has a public key $p k$ to "sign" a message such that any other party who knows pk can verify the signature.

Services of digital signature

1. Authentication: verify that the message originated from S .
2. Integrity: ensure message has not been modified in any way.

- Signature schemes can be viewed as the public-key counterpart of message authentication codes.

Advantages of digital signature over MAC

- The sender sign message once for all recipients.
- Third party can verify the legitimate signature on m with respect to S's public key.
- Non-repudiation: a valid signature on a message is enough to convince the judge that S indeed signed this message.
- Message authentication codes have the advantage of being roughly 2-3 orders of magnitude more efficient than digital signatures.

Adversary Goal

- Existential forgery

"Given a public key pk generated by a signer S, we say an adversary outputs a forgery if it outputs a message m along with a valid signature on m, such that m was not previously signed by S"

RSA Signatures

Attacks of RSA-signature

- The attack works as follows: given public key $p k=\langle N, e>$, choose arbitrary $\sigma \in \mathbb{Z}_{N}^{*}$ and compute $m=\sigma^{e} \bmod N$; then output the forgery (m, σ).
- The adversary can chooses a random $m 1 \in \mathbb{Z}_{N}^{*}$, sets $m 2$:= $\left[\mathrm{m} / \mathrm{m} \bmod N \mathrm{~N}\right.$, and then obtains signatures $\sigma 1, \sigma 2$ on miand m_{2}, respectively.
- We claim that $\sigma:=\sigma 1 . \sigma 2 \bmod N$ is a valid signature on m.
- This is because:

$$
\sigma^{e}=\left(\sigma_{1} \cdot \sigma_{2}\right)^{e}=\left(m_{1}^{d} \cdot m_{2}^{d}\right)^{e}=m_{1}^{e d} \cdot m_{2}^{e d}=m_{1} m_{2}=m \bmod N,
$$

Hashed-RSA

- The basic idea is to take modify the textbook RSA signature scheme by applying some function H to the message before signing it.

Discrete Logarithm(s) (DLs)

- Fix a prime p.
- Let a, b be nonzero integers $(\bmod \mathrm{p})$.
- The problem of finding x such that $a^{x} \equiv b(\bmod p)$ is called the discrete logarithm problem.
- Suppose that n is the smallest integer such that $\mathrm{a}^{\mathrm{n}} \equiv \mathrm{I}$ $(\bmod p)$, i.e., $n=\operatorname{ord}(a)$.
- By assuming $0 \leq x<n$, we denote $x=L_{a}(b)$, and call it the discrete \log of b w.r.t. a $(\bmod p)$
- $E x: p=1 I, a=2, b=9$, then $x=L_{2}(9)=6$

Schnorr's Signature

- Schnorr assumes the discrete log problem is difficult in prime order groups.
- Key generation

1. Choose primes p and q, such that q is a prime factor of $p-1$.
2. Choose an integer a, such that $\alpha^{q}=1 \bmod p$. The values a, p, and q comprise a global public key that can be common to a group of users.
3. Choose a random integer s with $0<s<q$. This is the user's private key.
4. Calculate $v=a^{-s} \bmod p$. This is the user's public key.

Schnorr's Signature

- Signing

A user with private key and public key generates a signature as follows.

1. Choose a random integer r with $0<r<q$ and compute $x=a^{r} \bmod p$. This computation is a preprocessing stage independent of the message M to be signed.
2. Concatenate the message with x and hash the result to compute the value e :

$$
e=\mathrm{H}(M \| x)
$$

3. Compute $y=(r+s e) \bmod q$. The signature consists of the pair (e, y).

Schnorr's Signature

- Verification

1. Compute $x^{\prime}=a^{y} v^{e} \bmod p$.
2. Verify that $e=\mathrm{H}\left(M \| x^{\prime}\right)$.

To see that the verification works, observe that

$$
x^{\prime} \equiv a^{y} v^{e} \equiv a^{y} a^{-s e} \equiv a^{y-s e} \equiv a^{r} \equiv x(\bmod p)
$$

Hence, $\mathrm{H}\left(M \| x^{\prime}\right)=\mathrm{H}(M \| x)$.

Digital Signature Algorithm (DSA)

$>$ creates a 320 bit signature
$>$ with 512-I024 bit security
> smaller and faster than RSA
> a digital signature scheme only
> security depends on difficulty of computing discrete logarithms

DSA Key Generation

- have shared global public key values ($\mathrm{p}, \mathrm{q}, \mathrm{g}$):
, choose 160 -bit prime number q
b choose a large prime p with $2^{\mathrm{L}-1}<\mathrm{p}<2^{\mathrm{L}}$
- where $L=512$ to 1024 bits and is a multiple of 64
b such that q is a 160 -bit prime divisor of ($\mathrm{p}-1$)
- choose $g=h(p-1) / q$
p where $1<\mathrm{h}<\mathrm{p}-1$ and $\mathrm{h}^{(\mathrm{p}-1) / \mathrm{q}} \bmod \mathrm{p}>1$
- users choose private \& compute public key:

। choose random private key: $x<q$
, compute public key: $y=g^{x} \bmod p$

DSA Signature Creation

> to sign a message M the sender:

- generates a random signature key k , $\mathrm{k}<\mathrm{q}$
- nb. k must be random, be destroyed after use, and never be reused
$>$ then computes signature pair:
$r=\left(g^{k} \bmod p\right) \bmod q$
$s=\left[k^{-1}(H(M)+x r)\right] \bmod q$
$>$ sends signature (r, s) with message M

DSA Signature Verification

- having received M \& signature (r, s)
- to verify a signature, recipient computes:
$\mathrm{W}=\mathrm{S}^{-1} \bmod \mathrm{q}$
$u 1=[H(M) w] \bmod q$
$u 2=(r w) \bmod q$
$\mathrm{V}=\left[\left(\mathrm{g}^{\mathrm{u} 1} \mathrm{y}^{\mathrm{u} 2}\right) \bmod \mathrm{P}\right] \bmod \mathrm{q}$
- if $\mathrm{v}=\mathrm{r}$ then signature is verified

DSS Overview

$$
\begin{aligned}
& s=f_{1}(H(M), k, x, r, q)=\left(k^{-1}(H(M)+x r)\right) \bmod q \\
& r=f_{2}(k, p, q, g)=\left(g^{k} \bmod p\right) \bmod q
\end{aligned}
$$

$$
\begin{aligned}
w & =f_{3}\left(s^{\prime}, q\right)=\left(s^{\prime}\right)^{-1} \bmod q \\
v & =f_{4}\left(y, q, g, H\left(M^{\prime}\right), w, r^{\prime}\right) \\
& =\left(\left(g^{\left.\left.\left(H\left(M^{\prime}\right) w\right) \bmod q y^{\prime} w \bmod q\right) \bmod p\right) \bmod q}\right.\right.
\end{aligned}
$$

(a) Signing

Correctness of DSA

$$
s=k^{-1}(H(m)+x r) \bmod q
$$

Thus

$$
\begin{aligned}
k & \equiv H(m) s^{-1}+x r s^{-1} \\
& \equiv H(m) w+x r w \quad(\bmod q)
\end{aligned}
$$

Since g has order $q(\bmod p)$ we have

$$
\begin{aligned}
g^{k} & \equiv g^{H(m) w} g^{z r w} \\
& \equiv g^{H(m) w} y^{r w} \\
& \equiv g^{u_{1}} y^{u_{2}} \quad(\bmod p)
\end{aligned}
$$

Finally, the correctness of DSA follows from

$$
\begin{aligned}
r & =\left(g^{k} \bmod p\right) \bmod q \\
& =\left(g^{u_{1}} y^{u_{2}} \bmod p\right) \bmod q \\
& =v
\end{aligned}
$$

الفاتحة على روح المرحوم الاستاذ الدكتور اياد ماهد ابراهيم مسبوقة بالصلاة على محمد و ال محمد

Thanks for listening

